易教网-福州家教
当前城市:福州 [切换其它城市] 
fz.eduease.com 家教热线请家教热线:400-6789-353 010-64436939

易教网微信版微信版 APP下载
易教播报

欢迎您光临易教网,感谢大家一直以来对易教网福州家教的大力支持和关注!我们将竭诚为您提供更优质便捷的服务,打造福州地区请家教,做家教,找家教的专业平台,敬请致电:400-6789-353

当前位置:家教网首页 > 福州家教网 > 家教直通车 > 初中数学优秀教案

初中数学优秀教案

【来源:易教网 更新时间:2025-08-20
初中数学优秀教案

(一)教学知识点

1.掌握极差、方差、标准差的概念.

2.明白极差、方差、标准差是反映一组数据稳定性大小的.

3.用计算器(或计算机)计算一 组数据的标准差与方差.

(二)能力训练要求

1.经历对数据处理的过程,发展学生初步的统计意识和数据处理能力.

2.根据极差、方差、标准差的大小,解决问题,培养学生解决问题的能力.

(三)情感与价值观要求

1.通过解决现实情境中问题,增强数学素养,用数 学的眼光看世界.

2.通过小组活动,培养学生的合作意识和能力.

●教学重点

1.掌握极差、方差或标准差的概念,明白极差、方差、标准差是刻画数量离散程度的几个统计量.

2.会求一组数据的极差、方差、标准差,并会判断这组数据的稳定性 .

●教学难点

理解方差、标准差的概念,会求一组数据的方差、标准差.

●教学方法

启发引导法

●教学过程

Ⅰ.创设现实问题情景,引入新课

[师]在信息技术不断发展的社会里,人们需要对大量纷繁复杂的信息作出恰当的选择与判断.

当我们为加入“WTO”而欣喜若狂的时刻,为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分.某外贸公司要出口 一批规格为75 g的鸡腿.现有2个厂家提供货源.

[生](1)根据20只鸡腿在图中的分布情况,可知甲、乙两厂被抽取鸡腿的平均质量分别为75 g.

(2)设甲、乙两厂被抽取的.鸡腿的平均质量 甲, 乙,根据给出的数据,得

甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)

乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)

(3) 从甲厂抽取的这20只鸡腿质量的最大值是78 g,最小值是72 g,它们相差78-72=6 g;从乙厂抽取的这20只鸡腿质量的最大值是80 g,最小值是71 g,它们相差80-71=9(g).

(4)如果只考虑鸡腿的规格,我认为外贸公司应购买甲厂的鸡腿,因为甲厂鸡腿规格比较稳定,在75 g左右摆动幅度较小.

[师]很好.在我们的实际生活中,会出现上面的情况,平均值一样,这里我们也关心数据与平均值的离散程度 .也就是说,这种情况下,人们除了关心数据的“平均值”即“平均水平”外,人们往往还关注数据的离散程度,即相对于“平均水平”的偏离情况.

从上图也能很直观地观察出:甲厂相对于“平均水平”的偏离程度比乙厂相对于“平均水平” 的偏离程度小.

这节课我们就来学习关于数据的离散程度的几个量.

Ⅱ.讲授新课

[师]在上面几个问题中,你认为哪一个数值是反映数据的离散程度的一个量呢?

[生]我认为最大值与最小值的差是反映数据离 散程度的一个量.

[师]很正确.我们把一组数据中最大数据与 最小数据的差叫极差.而极差是刻画数据离散程度的一个统计量.

[生](1)丙厂这20只鸡腿质量的平均数:

丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=75.1(g)

极差为:79-72=7(g)

[生]在第(2)问中,我认为可以用丙厂这20只鸡腿的质量与其平均数的差的和来刻画这20只鸡腿的质量与其平均数的差距.

甲厂20只鸡 腿的质量与相应的平均数的差距为:

(75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)

=0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;

丙厂20只鸡腿的质量与相应的平均数的差距为:

(75-75.1)+(75-75.1)+(74- 75.1)+(74-75.1)+(74-75.1)+(74-75.1)+(73-75.1)+(73-75.1)+(72-75.1)+(72-75.1)+(72-75.1)+(76-75.1)+(76-75.1)+(76-75.1)+(77-75.1) +(77-75.1)+(77-75.1)+(78-75.1)+(78-75.1)+(79-75.1)=0

由此可知不能用各数据与平均数的差的和来衡量这组数据 的波动大小.

数学上,数据的离散程度还可以用方差或标准差来刻画.

其中方差是各个数据与平均数之差的平方的平均数,即

s2= [(x1- )2+(x2- )2+…+(xn- )2]

其中 是x1,x2,…,xn的平均数,s2是 方差,而标准差就是方差的算术平方根.

[生]为什么方差概念中要除以数据个数呢?

[师]是为了消除数据个数的印象.

由此我们知道:一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.

[生]极差还比较容易算出.而方差、标准差算起来就麻烦多了.

[师]我们可以使用计算器,它可以很方便地计算出一组数据的标准差与方差,其大体步骤是 ;进入统计计算状态,输入数据,按键就可得出标准差.

同学们可在自己的计算器上探 索计算标准差的具体操作

计算器一般不具有求方差的功能,可以先求出标准差,再平方即可求出方差.

[生]s甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =2.5;

s丙2= [0.12+0.12+1.12×4+2.12×2+3.12×3+0.92×3+1.92×3+2.92×2+3.9]= ×76 .49=3.82.

因为s甲2<s丙2.

所以根据计算的结果,我认为甲厂的产品更符合要求.

Ⅲ.随堂练习

Ⅳ.课时小结

这节课 ,我们着重学习:对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小;描述一组数据的波动大小的量不止一种,最常用的极差、方差、标准差;方差 和标准差既有联系 ,也有区别.

Ⅴ.课后作业

Ⅵ.活动与探究

甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:

(1)请你填上表中乙学生的相关数据;

(2)根据你所学的统计数知识,利用上述某些数据评价甲、乙两人的射击水平.

-更多-

最新教员

  1. 许教员 福州大学 过程装备与控制工程
  2. 温教员 福州黎明职业技术学院 西式烹饪
  3. 周教员 福建工程学院 网络与新媒体
  4. 曹教员 福建商学院 数据科学与大数据技术
  5. 杨教员 福州工商学院 国际经济与贸易
  6. 林教员 福建师范大学 生态学
  7. 胡教员 福建技术师范学院 电子信息工程
  8. 童老师 中学高级教师 数学 电子信息工程
  9. 陈教员 福建江夏学院 法学